Exercise 75

When a foreign object lodged in the trachea (windpipe) forces a person to cough, the diaphragm thrusts upward causing an increase in pressure in the lungs. This is accompanied by a contraction of the trachea, making a narrower channel for the expelled air to flow through. For a given amount of air to escape in a fixed time, it must move faster through the narrower channel than the wider one. The greater the velocity of the airstream, the greater the force on the foreign object. X rays show that the radius of the circular tracheal tube contracts to about two-thirds of its normal radius during a cough. According to a mathematical model of coughing, the velocity v of the airstream is related to the radius r of the trachea by the equation

$$
v(r)=k\left(r_{0}-r\right) r^{2} \quad \frac{1}{2} r_{0} \leq r \leq r_{0}
$$

where k is a constant and r_{0} is the normal radius of the trachea. The restriction on r is due to the fact that the tracheal wall stiffens under pressure and a contraction greater than $\frac{1}{2} r_{0}$ is prevented (otherwise the person would suffocate).
(a) Determine the value of r in the interval $\left[\frac{1}{2} r_{0}, r_{0}\right]$ at which v has an absolute maximum. How does this compare with experimental evidence?
(b) What is the absolute maximum value of v on the interval?
(c) Sketch the graph of v on the interval $\left[0, r_{0}\right]$.

Solution

To find the extreme values of $v(r)$ on the interval $r_{0} / 2 \leq r \leq r_{0}$, take the derivative.

$$
\begin{aligned}
v^{\prime}(r) & =\frac{d}{d r}\left[k\left(r_{0}-r\right) r^{2}\right] \\
& =\frac{d}{d r}\left(k r_{0} r^{2}-k r^{3}\right) \\
& =\frac{d}{d r}\left(k r_{0} r^{2}\right)-\frac{d}{d r}\left(k r^{3}\right) \\
& =2 k r_{0} r-3 k r^{2}
\end{aligned}
$$

Then set $v^{\prime}(r)=0$ and solve for r.

$$
\begin{gathered}
2 k r_{0} r-3 k r^{2}=0 \\
r\left(2 k r_{0}-3 k r\right)=0 \\
r=0 \quad \text { or } \quad 2 k r_{0}-3 k r=0 \\
r=0 \quad \text { or } \quad r=\frac{2}{3} r_{0}
\end{gathered}
$$

$r=(2 / 3) r_{0}$ is within the interval $r_{0} / 2 \leq r \leq r_{0}$, so evaluate the function here.

$$
v\left(\frac{2}{3} r_{0}\right)=k\left[r_{0}-\left(\frac{2}{3} r_{0}\right)\right]\left(\frac{2}{3} r_{0}\right)^{2}=\frac{4 k r_{0}^{3}}{27} \approx 0.148 k r_{0}^{3} \quad \text { (absolute maximum) }
$$

Evaluate the function at the endpoints of the interval.

$$
\begin{aligned}
v\left(\frac{r_{0}}{2}\right) & =k\left[r_{0}-\left(\frac{1}{2} r_{0}\right)\right]\left(\frac{1}{2} r_{0}\right)^{2}=\frac{k r_{0}^{3}}{8}=0.125 k r_{0}^{3} \\
v\left(r_{0}\right) & =k\left(r_{0}-r_{0}\right) r_{0}^{2}=0
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $r_{0} / 2 \leq r \leq r_{0}$. The maximum value of v occurs when $r=(2 / 3) r_{0}$, which is in agreement with the X -ray evidence. The maximum velocity is $4 k r_{0}^{3} / 27$. Rewrite the function in terms of dimensionless variables,

$$
\begin{aligned}
v(r) & =k\left(r_{0}-r\right) r^{2} \\
& =k r_{0}\left(1-\frac{r}{r_{0}}\right) r^{2} \\
& =k r_{0}^{3}\left(1-\frac{r}{r_{0}}\right) \frac{r^{2}}{r_{0}^{2}} \\
\frac{v(r)}{k r_{0}^{3}} & =\left(1-\frac{r}{r_{0}}\right)\left(\frac{r}{r_{0}}\right)^{2},
\end{aligned}
$$

in order to graph it. Note that since $r_{0} / 2 \leq r \leq r_{0}, 1 / 2 \leq r / r_{0} \leq 1$.

Below is a graph of the same function over $\left[0, r_{0}\right]$.

